

TEST REPORT

Applicant:	Shenzhen Sunricher Technology Limited
Address of Applicant:	3F & 5F, Building E, Qihang Innovation Industrial Park, No. 1008 Songbai Road, Nanshan District, Shenzhen, Guangdong 518055 China
Manufacturer/Factory:	Shenzhen Sunricher Technology Limited
Address of Manufacturer/Factory:	3F & 5F, Building E, Qihang Innovation Industrial Park, No. 1008 Songbai Road, Nanshan District, Shenzhen, Guangdong 518055 China
Equipment Under Test (El	(TL
Product Name:	LED Controller
Model No.:	See section 5.1
Applicable standards: Date of sample receipt:	ETSI EN 300 220-1 V3.1.1 (2017-02) ETSI EN 300 220-2 V3.1.1 (2017-02) August 11, 2022
Date of Test:	August 12, 2022-September 05, 2022
Date of report issue:	September 05, 2022
Test Result :	PASS *

*In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 35

Version 2

Version No.	Date	Description
00	September 05, 2022	Original

Prepared By:

Date:

September 05, 2022

SONDL 47 Reviewer

Project Engineer

Date:

September 05, 2022

Check By:

GTS

3 Contents

Report No.: GTSL202208000127E02

			Page
1	COVE	ER PAGE	1
~	VED		
2	VERS	SION	2
3	CON	TENTS	3
4	TEST	SUMMARY	4
5		ERAL INFORMATION	
		GENERAL DESCRIPTION OF EUT	
		TEST LOCATION DESCRIPTION OF SUPPORT UNITS	
		DEVIATION FROM STANDARDS	
		Abnormalities from Standard Conditions	
		OTHER INFORMATION REQUESTED BY THE CUSTOMER	
		MEASUREMENT UNCERTAINTY	
6	TEST	INSTRUMENTS LIST	7
0	TEST		
7	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION IN ETSI EN 300 220-2	9
		TEST CONDITIONS	
		TEST CONDITIONS	
	7.2.1	Operation Frequency	
	7.2.2		
	7.2.3		
	7.2.4		
	7.2.5	TX Out Of Band Emissions	15
	7.2.6		
	7.2.7		
		RECEIVER REQUIREMENTS	
	7.3.1	Receiver sensitivity Clear Channel Assessment threshold	
	7.3.2 7.3.3		
	7.3.4		
	7.3.5		
	7.3.6		
	7.3.7		
	7.3.8		
	7.3.9	Bi-Directional Operation Verification	26
	7.3.10	9	
	7.3.1	1 Spurious emissions	29
8	TEST	SETUP PHOTO	35
9	EUT	CONSTRUCTIONAL DETAILS	35

4 Test Summary

Ra	dio Spectrum Matter	Radio Spectrum Matter (RSM) Part of Tx								
Test item	Test Requirement	Test method	Limit/Severity	Result						
Operating frequency	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass						
Effective Radiated Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass						
Maximum e.r.p. Spectral Density	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	N/A						
Duty cycle	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass						
Occupied Bandwidth	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass						
Frequency Error	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.7	N/A						
Tx Out of Band Emissions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.8.2	Pass						
Transmit Spurious Emmisions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.9.2	Pass						
Transient Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.10.2	Pass						
Adjacent Channel Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.11.2	N/A						
TX behaviour under Low Voltage Conditions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.12.2	Pass						
Adaptive Power Control	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.13.2	N/A						
Short Term Behaviour	ETSI EN 300 220-2	N/A	annex C, table C.1	N/A						
FHSS Equipment Requirements	ETSI EN 300 220-2	N/A	Clause 4.3.10.2	N/A						
Ra	dio Spectrum Matter	(RSM) Part of Rx								
Test item	Test Requirement	Test method	Limit/Severity	Result						
Receiver sensitivity	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.14.2	N/A						
Adjacent channel selectivity	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.15.2	N/A						
Receiver saturation at Adjacent Channel	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.16.2	N/A						
Spurious response rejection	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.17.2	N/A						
Blocking	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.18	Pass						
Behaviour at high wanted signal level	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.19.2	N/A						
Clear Channel Assessment threshold	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.21.2.2	N/A						
Polite spectrum access timing parameters	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.21.3.1	N/A						
Adaptive Frequency Agility	ETSI EN 300 220-2	N/A	N/A	N/A						
Receive Spurious emmisions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.9.2	Pass						
Bi-Directional Operation Verification	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.22.2	N/A						

Pass: The EUT complies with the essential requirements in the standard. N/A: not applicable.

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 General Description of EUT

Product Name:	LED Controller
Model No.:	Receiver: SR-1009MS-RGBW, 80495, SR-1009MS-MONO,80494
	SR-1009XXX-YYYY, SR-1029XXX-YYYY "X", "Y" indicates the customer code for market purpose, it could be alphanumeric characters or blank.
	Transmitter: SR-1009MS-RGBW-REMOTE, SR-1009MS-MONO- REMOTE, SR-1009MS-MONO Kit,80579, SR-2833K4, SR-2833K1, SR- 2833K2, SR-2833K5, SR-2833K8, SR-2833K-CCT, SR-2833T1, SR- 2833T2, SR-2833CCT, SR-2833N-Z3, SR-2833N-Z4, SR-2833N-Z5, SR- 2801, SR-2801F, SR-2833N-K5-CCT, 80578, SR-1009MS-RGBW Kit, SR-2839WK, SR-2839CCT, SR-2839RGB, SR-2839DIM, SR-2839W Kit, SR-2839RGB Kit, SR-2833N-K5-RGBW, SR-1009XX-YYYY-ZZZZZZ, SR-28XXXXXX, SR-28XXXXXY-YYY, "X", "Y", "Z" indicates the customer code for market purpose, it could be alphanumeric characters or blank.
Test Model No:	Receiver: SR-1009MS-RGBW
	Transmitter: SR-1009MS-RGBW-REMOTE
	identical in the same PCB layout, interior structure and electrical circuits. e color and model name for commercial purpose.
Operation Frequency:	869.5MHz
Number of Channels:	1
Modulation type:	FSK
Antenna type:	TX: PCB Antenna RX: Integral Antenna
Antenna Gain:	TX/RX: 0dBi
Power supply:	TX: DC 3V RX: DC 12-24V
5.2 Test mode	

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
Receiving mode	Keep the EUT in continuously receiving mode

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC — Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All tests were performed at: Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480

Fax: 0755-27798960

5.5 Description of Support Units

None

5.6 Deviation from Standards

None

5.7 Abnormalities from Standard Conditions

None

5.8 Other Information Requested by the Customer

None

5.9 Measurement Uncertainty

No.	Item	Measurement Uncertainty						
1	Radio Frequency	$\pm 7.25 \times 10^{-8}$						
2	Duty cycle	±0.37%						
3	Occupied Bandwidth	±3%						
4	RF conducted power	±0.75dB						
5	RF power density	±3dB						
6	Conducted Spurious emissions ±2.58dB							
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)						
		±3.1dB (9kHz-30MHz)						
		±3.8039dB (30MHz-200MHz)						
8	Radiated Spurious emission test	±3.9679dB (200MHz-1GHz)						
		±4.29dB (1GHz-18GHz)						
		±3.30dB (18GHz-40GHz)						
9	Temperature test	±1°C						
10	Humidity test	±3%						
11	Time	±3%						

6 Test Instruments list

Rad	iated Emission:					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 02, 2020	July 01, 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	April 22, 2022	April 21, 2023
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	March 21, 2022	March 20, 2023
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June 12, 2022	June 11, 2023
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 23, 2022	June 22, 2023
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	April 22, 2022	April 21, 2023
9	Coaxial Cable	GTS	N/A	GTS211	April 22, 2022	April 21, 2023
10	Coaxial cable	GTS	N/A	GTS210	April 22, 2022	April 21, 2023
11	Coaxial Cable	GTS	N/A	GTS212	April 22, 2022	April 21, 2023
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	April 22, 2022	April 21, 2023
13	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 23, 2022	June 22, 2023
14	Band filter	Amindeon	82346	GTS219	June 23, 2022	June 22, 2023
15	Power Meter	Anritsu	ML2495A	GTS540	June 23, 2022	June 22, 2023
16	Power Sensor	Anritsu	MA2411B	GTS541	June 23, 2022	June 22, 2023
17	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	April 22, 2022	April 21, 2023
18	Splitter	Agilent	11636B	GTS237	June 23, 2022	June 22, 2023
19	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 30, 2021	Nov. 29, 2022
20	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	April 22, 2022	April 21, 2023
21	Breitband hornantenna	SCHWARZBECK	BBHA 9170	GTS579	Oct. 17, 2021	Oct. 16, 2022
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 17, 2021	Oct. 16, 2022
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 17, 2021	Oct. 16, 2022
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June 23, 2022	June 22, 2023
25	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	April 22, 2022	April 21, 2023

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 22, 2022	April 21, 2023			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 22, 2022	April 21, 2023			
3	Spectrum Analyzer	Agilent	E4440A	GTS536	April 22, 2022	April 21, 2023			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 22, 2022	April 21, 2023			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 22, 2022	April 21, 2023			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 22, 2022	April 21, 2023			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 22, 2022	April 21, 2023			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 22, 2022	April 21, 2023			

EN30	EN300220 Blocking:								
Item Test Equipment		Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Signal Generator	Rohde & Schwarz	SML03	GTS561	April 24, 2022	April 23, 2023			
2	Signal Generator	Rohde & Schwarz	SML03	GTS562	April 24, 2022	April 23, 2023			

G	General used equipment:							
Item Test Equipment Manufacture				Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1		Humidity/ Temperature Indicator	KTJ	TA328	GTS243	April 25, 2022	April 24, 2023	
2	2	Barometer	KUMAO	SF132	GTS647	July 26, 2022	July 25, 2023	

7 Radio Technical Requirements Specification in ETSI EN 300 220-2

7.1 Test conditions

liam	Normal	Extreme condition					
Item	condition	НУНТ	LVHT	HVLT	LVLT		
Temperature	+25°C	+50°C	+50°C	-20°C	-20°C		
Voltage(DC)	3.0	3.2	2.8	3.2	2.8		
Humidity		20%-95%					
Atmospheric Pressure:		1008 mbar					

7.2 Transmitter Requirement

7.2.1 Operation Frequency

Measurement Conditions		Operating frequency	Nominal Operating Frequency	ocw	Limit (dBm)	Result
Tnormal(25℃)	Vnorm: 3Vdc	869.5MHz	869.5MHz	136kHz	869,400MHz to 869,650MHz	PASS

7.2.2 Effective Radiated Power					
Test Requirement:	ETSI EN 300 220-2 clause 4.3.1				
Test Method:	ETSI EN 300 220-1 clause 5.2.2				
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)				
Receiver setup:	RBW=120kHz, VBW=300kHz, Detector= peak				
Limit:	25mW=14dBm				
Test setup:	Antenna Tower Antenna Tower Antenna Tower Tost Receiver				
Test procedure:	 Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a norradiating cable. 				

7.2.2 Effective Radiated Power

	generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.	
	8. Repeat step 7 with both antennas horizontally polarized for each test frequency.	
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:	
	ERP(dBm) = Pg(dBm)) + antenna gain (dBd)	
	where: Pg is the generator output power into the substitution antenna.	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Measurement Conditions	Operation Frequency(MHz)	ERP(dBm)	Limit	Result
TNVN	869.50	1.53	25mW (i.e. 14.0 dBm)	PASS
TLVL	869.50	1.36	25mW (i.e. 14.0 dBm)	PASS
TLVH	869.50	1.43	25mW (i.e. 14.0 dBm)	PASS
THVL	869.50	1.42	25mW (i.e. 14.0 dBm)	PASS
THVH	869.50	1.39	25mW (i.e. 14.0 dBm)	PASS

7.2.3 Duty Cycle

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3				
Test Method:	ETSI EN 300 220-1 clause 5.4				
Limit:	0.1%				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	\leq 0.1%. The equipment met the requirement of this clause.				

Test Requirement:	ETSI EN 300 220-2 clause 4.3.4				
Test Method:	ETSI EN 300 220-1 clause 5.6				
Receive setup:	Table 12: Test Parameters for Max Occupied Bandwidth Measurement				
	Setting Value Notes				
	Centre frequency The nominal Operating Frequency as declared by the manufacturer				
	RBW without being below 100 Hz				
	VBW 3 x RBW Nearest available analyser setting to 3 x RBW				
	Span At least 2 x Operating Channel width Span should be large enough to include all major components of the signal and its side bands				
	Detector Mode RMS				
	Trace Max hold				
Limit:	Operating Channel defined by F_{low} and F_{high} . Note: For 865 MHz to 868 MHz FHSS equipment. The Maximum occupied bandwidth per hopping channel shell less or equal to 50kHz. For 863 MH to 870 MHz FHSS equipment. The Maximum occupied bandwidth per hopping channel shell less or equal to 100kHz.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.2.4 Occupied Bandwidth

Measurement Data

Measurement Conditions	Operating Frequency	OBW	Limit	Result
TNVN	869.5MHz	135.56kHz	869,400 MHz to 869,650 MHz	PASS
TLVL	869.5MHz	134.65kHz	869,400 MHz to 869,650 MHz	PASS
TLVH	869.5MHz	134.34kHz	869,400 MHz to 869,650 MHz	PASS
THVL	869.5MHz	135.36kHz	869,400 MHz to 869,650 MHz	PASS
ТНѴН	869.5MHz	135.74kHz	869,400 MHz to 869,650 MHz	PASS

Test Requirement:	ETSI EN 300 220	ETSI EN 300 220-2 clause 4.3.5					
Test Method:	ETSI EN 300 220	ETSI EN 300 220-1 clause 5.8.3					
Receive setup:	Table 16: Test Parameters for Out Of Band for Operating Channel Measurement						
	Spectrum Analy Setting	Spectrum Analyser Value Setting		Notes			
	Centre frequency	Operating Frequency					
	Span	6 x Operating					
		Channel width 1 kHz	Resolution ban	Resolution bandwidth for Out Of Band domain			
	RBW	(see note)	measurements				
	Detector Function	RMS Linear AVG	An appropriate averaged to give	number of sam	ng		
		Max Hold e of RBW used is different fr in clause 4.3.10.1.	test signal.	-	g D-M2a or D-M3 the bandwidth		
		Table 15: Emission limits	in the Out Of Ba	nd domains			
	Domain	Frequency Ran		RBW _{REF}	Max power limit		
		f ≤ f _{low OFB} - 400	kHz	10 kHz	-36 dBm		
		$F_{low_OFB} - 400 \text{ kHz} \le f \le f_{low_OFB} - 200 \text{ kHz}$ flow - 200 kHz $\le f < f_{low_OFB}$		1 kHz 1 kHz	-36 dBm		
	OOB limits applicable to Operational Frequency		$f = f_{low OFB}$		See Figure 6 0 dBm		
	Band	f = f _{high OFB}	f = f _{high OFB}		0 dBm		
	(See Figure 6)	$F_{high OFB} < f \le f_{high OFB}$	F _{biob_OEB} < f ≤ f _{biob_OEB} + 200 kHz		See Figure 6		
		F_{high_OFB} + 200 kHz $\leq f \leq f_{high_OFB}$	$F_{high OFB} + 200 \text{ kHz} \le f \le f_{high OFB} + 400 \text{ kHz}$		-36 dBm		
Limit:		F _{high_OFB} + 400 kHz ≤ f f = f _c - 2.5 x OCW		10 kHz 1 kHz	-36 dBm -36 dBm		
		$f_c = 2.5 \times OCW$		1 kHz	See Figure 5		
	OOB limits applicable to	f = f _c - 0,5 x OC	w	1 kHz	0 dBm		
	Operating Channel (See Figure 5)	$f = f_c + 0.5 \times OC$		1 kHz 1 kHz	0 dBm		
		$f_c + 0.5 \times OCW \le f \le f_c + 2.5 \times OCW$ $f = f_c + 2.5 \times OCW$			See Figure 5 -36 dBm		
	F _{high_OFB} is the u		quency Band. equency Band.				
Test setup:	Spectrum	Spectrum Analyzer E.U.T					
	Non-Conducted Table						
Tert Dury 1		Ground Reference Pla					
Test Procedure:		8.3.4 of ETSI EN30	00220-1				
Test Instruments: Test mode:		Refer to section 6.0 for details Refer to section 5.2 for details					
Test results:	Pass						
	1 400						

7.2.5 TX Out Of Band Emissions

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

Domain	Frequency Range	Measured Power (dBm/kHz)	Result
	f≤f _{low_OFB} -400kHz	-71.15	PASS
OOB limits applicable to Operational	F _{Iow_OFB} -400kHz≤f≤f _{Iow_OFB} -200kHz f _{Iow} -200 kHz≤f <f<sub>Iow_OFB f=f_{Iow_OFB}</f<sub>	-46.65	PASS
Frequency Band (See Figure6)	f=f _{high_OFB} F _{high_OFB} < f≤f _{high_OFB} +200kHz F _{high_OFB} +200 kHz≤f≤f _{high_OFB} +400kHz	-48.68	PASS
	F _{hiah_OFB} +400 kHz≤f	-68.85	PASS
	$f = f_c - 2.5 \text{ xOCW}$	-72.65	PASS
	f _c -2,5xOCW≤f≤f _c -0,5xOCW	-61.34	PASS
OOB limits applicable to Operating Channel	f= f _c - 0,5 xOCW	-44.83	PASS
(See Figure5)	f= f _c + 0,5 xOCW	-44.86	PASS
	f _c +0,5xOCW≤f≤f _c +2,5 xOCW	-60.21	PASS
	f= f _c +2,5 xOCW	-69.52	PASS

7.2.6 Transient power

Test Requirement:	ETSI EN 300 220-2 Clau	ETSI EN 300 220-2 Clause 4.3.6				
Test Method:	ETSI EN 300 220-1 Clause 5.10.3					
Limit:	Table 23: Transmitter Transient Power limits					
	Absolute offset from centre	RBW _{REF}	rement points			
	frequency	4.1.1.1-		0 dDm	8	
	≤ 400 kHz > 400 kHz	1 kHz 1 kHz		0 dBm -27 dBm		
Test procedure:	measuring equipment.	The output of the EUT shall be connected to a spectrum analyser or equiv measuring equipment. The measurement shall be undertaken in zero span mode. The analyser's				
	centre frequency shall be					
	These offset values and t	ineir corres	ponding RE	svv configuration	s are listed in	
	Table 24.	le 24: RBW fo	or Transient M	Measurement		
	Measurement points:		Applycor		RBWREF	
	offset from centre frequency		Analyser I		REF	
	-0,5 x OCW - 3 kHz 0,5 x OCW + 3 kHz		1 kHz		1kHz	
	Not applicable for OCW < 25 kHz	:			TKTZ	
	±12,5 kHz or ±OCW		BW pattern 1, 3	, 10 kHz) ≤ Offset	1 kHz	
	whichever is the greater		frequency/6 (s	ee note)	T KI IZ	
	-0,5 x OCW - 400 kHz 0,5 x OCW + 400 kHz		100 kH	z	1 kHz	
	-0,5 x OCW -1 200 kHz		200 FU	-	1 64.7	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k	Hz RBW filter b	andwidth increr	bandwidth that falls int mental pattern of spectr	um analysers.	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v	Hz RBW filter b Iz then the RBV of the analyser value correspon	is the maximum bandwidth increr V value corresp settings are list ding to one OC\	bandwidth that falls int	o the commonly um analysers. set frequency is DCW is 250 kHz	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2	Hz RBW filter b Iz then the RBV of the analyser value correspon 25: Parameter	the maximum bandwidth increr V value corresp settings are list ding to one OC\ s for Transien	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 int Measurement	l o the commonly um analysers. set frequency is DCW is 250 kHz D kHz.	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v	Hz RBW filter b Iz then the RBV of the analyser alue correspon 25: Parameter Va	is the maximum bandwidth increr V value corresp settings are list ding to one OC\	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 3 It Measurement At higher RBW value	o the commonly our analysers. set frequency is DCW is 250 kHz D kHz. tes VBW may be	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time	Hz RBW filter b Iz then the RBV of the analyser value correspon 25: Parameter Va 1 5000	is the maximum andwidth increr V value corresp settings are list ding to one OCV s for Transien lue	bandwidth that falls int nental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 3 ht Measurement No	o the commonly our analysers. set frequency is DCW is 250 kHz D kHz. tes VBW may be	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 1 500 Gau	is the maximum bandwidth increr V value corresp settings are list ding to one OCV s for Transien lue 0 0 ms ssian	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 3 It Measurement At higher RBW value	o the commonly our analysers. set frequency is DCW is 250 kHz D kHz. tes VBW may be	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 1 500 Gau RI	as the maximum bandwidth increr V value corresp settings are list ding to one OCV rs for Transien lue 0 0 ms ssian MS	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 3 It Measurement At higher RBW value	l o the commonly um analysers. set frequency is DCW is 250 kHz D kHz. tes VBW may be	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points	Hz RBW filter b Hz then the RBV of the analyser value correspon 25: Parameter Va 1 500 Gau RI Max 51	as the maximum andwidth increr V value corresp settings are list ding to one OCN s for Transien lue 0 0 ms ssian MS hold 01	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 3 It Measurement At higher RBW value	l o the commonly um analysers. set frequency is DCW is 250 kHz D kHz. tes VBW may be	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode	Hz RBW filter b Iz then the RBV of the analyser ralue correspon 25: Parameter Va 1 500 Gau Ri Max 5 Continuo	as the maximum andwidth increr V value corresp settings are list ding to one OCV s for Transien lue 0 0 ms ssian MS hold 01 us sweep	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 ht Measurement At higher RBW value clipped to its maximu	l o the commonly um analysers. set frequency is 0CW is 250 kHz 0 kHz. tes tes vBW may be im value	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 1 500 Gau Rt Max 501 Continuo mber of sweep p	is the maximum andwidth increr V value corresp settings are list ding to one OCV s for Transien lue 0 0 ms ssian MS hold 01 us sweep points and the sv	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 ht Measurement At higher RBW value clipped to its maximu	l o the commonly um analysers. set frequency is 0CW is 250 kHz 0 kHz. tes tes vBW may be im value	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 1 500 Gau RI Max Continuo mber of sweep p p points is used.	is the maximum andwidth increr V value corresp settings are list ding to one OCN is for Transien Iue 0 0 ms ssian MS hold 01 us sweep points and the sw	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 ht Measurement At higher RBW value clipped to its maximu upped to its maximu upped to its maximu	l o the commonly um analysers. set frequency is DCW is 250 kHz D kHz. tes tes WBW may be im value	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 25: Parameter Va 1 500 Gau RI Max 501 Continuo mber of sweep p p points is used. all be D-M3	is the maximum andwidth increr V value corresp settings are list ding to one OCV is for Transien lue 0 0 ms ssian MS hold 0 1 us sweep points and the sv . The analy	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 ht Measurement At higher RBW value clipped to its maximus weep time shall be the sa	l o the commonly um analysers. set frequency is 0CW is 250 kHz 0 kHz. tes vBW may be im value where ratio as above it o the settings	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 25: Parameter Va 1 500 Gau RI Max 501 Continuo mber of sweep p p points is used all be D-M3 rement sha	is the maximum andwidth increr V value corresp settings are list ding to one OCV is for Transien lue 0 0 ms ssian MS hold 01 us sweep boints and the sv . The analyte all be started	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 ht Measurement At higher RBW value clipped to its maximus weep time shall be the sa ser shall be set to d for each offset	l o the commonly um analysers. set frequency is 0CW is 250 kHz 0 kHz. tes se VBW may be im value ume ratio as above it o the settings frequency. Th	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation sha of Table 25 and a measu EUT shall transmit at lease	Hz RBW filter b Hz then the RBW of the analyser value correspon 25: Parameter Va 25: Parameter Va 1 500 Gau RH Max 501 Continuo mber of sweep p p points is used. all be D-M3 rement sha st five D-M3	is the maximum andwidth increr V value corresp settings are list ding to one OCV s for Transien lue 0 0 ms ssian MS hold 01 us sweep boints and the sv . The analy all be started 3 test signa	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 ht Measurement At higher RBW value clipped to its maximu weep time shall be the sa ser shall be set to d for each offset I. The peak value	l o the commonly our analysers. set frequency is DCW is 250 kHz D kHz. tes tes tes tes tres tres tres tres the settings frequency. The shall be	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation sha of Table 25 and a measu	Hz RBW filter b Hz then the RBW of the analyser value correspon 25: Parameter Va 25: Parameter Va 1 500 Gau RH Max 501 Continuo mber of sweep p p points is used. all be D-M3 rement sha st five D-M3	is the maximum andwidth increr V value corresp settings are list ding to one OCV s for Transien lue 0 0 ms ssian MS hold 01 us sweep boints and the sv . The analy all be started 3 test signa	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 ht Measurement At higher RBW value clipped to its maximu weep time shall be the sa ser shall be set to d for each offset I. The peak value	l o the commonly our analysers. set frequency is DCW is 250 kHz D kHz. tes tes tes tes tres tres tres tres the settings frequency. The shall be	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shad of Table 25 and a measu EUT shall transmit at lease recorded and the measure mentioned in Table 24.	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 25: Parameter Va 1 500 Gau Gau RI Max 50 Continuo mber of sweep p p points is used all be D-M3 rement sha st five D-M3 rement sha	as the maximum andwidth increr V value corresp settings are list ding to one OCI s for Transien Iue 0 0 0 ms ssian MS hold 01 us sweep booints and the sv . The analyse all be started 3 test signa II be repeat	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 it Measurement At higher RBW value clipped to its maximus weep time shall be the sa ser shall be set to d for each offset I. The peak value ed at each offset	tes the settings frequency is bCW is 250 kHz bCW is 250 kHz tes tes tes tes tes tes to the settings frequency. The shall be the frequency	
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shae of Table 25 and a measu EUT shall transmit at lease recorded and the measure mentioned in Table 24. The recorded power value	Hz RBW filter b Hz then the RBV of the analyser ralue correspon 25: Parameter Va 25: Parameter Va 1 500 Gau RI Max 5 Continuo mber of sweep I p points is used all be D-M3 rement sha st five D-M3 rement sha st five D-M3	as the maximum andwidth increr V value corresp settings are list ding to one OCI s for Transien lue 00 0 ms ssian MS hold 01 us sweep booints and the sv 3 test signa II be repeat converted	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 it Measurement At higher RBW value clipped to its maximus weep time shall be the sa ser shall be set to d for each offset I. The peak value ed at each offset	tes the settings frequency is bCW is 250 kHz bCW is 250 kHz tes tes tes tes tes tes to the settings frequency. The shall be the frequency	
Test Instruments:	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shad of Table 25 and a measu EUT shall transmit at lease recorded and the measure mentioned in Table 24.	Hz RBW filter b Hz then the RBW of the analyser ralue correspon 25: Parameter Va 25: Parameter Va 1 500 Gau RI Max 500 Continuo mber of sweep p points is used. all be D-M3 rement sha st five D-M3 rement sha	as the maximum andwidth increr V value corresp settings are list ding to one OCI s for Transien lue 00 0 ms ssian MS hold 01 us sweep booints and the sv 3 test signa II be repeat converted	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 it Measurement At higher RBW value clipped to its maximus weep time shall be the sa ser shall be set to d for each offset I. The peak value ed at each offset	tes the settings frequency is bCW is 250 kHz bCW is 250 kHz tes tes tes tes tes tes to the settings frequency. The shall be the frequency	
Test Instruments: Test mode:	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3 implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest then the RBW v Table 2 Spectrum Analyser Setting VBW/RBW Sweep time RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shat of Table 25 and a measu EUT shall transmit at lease recorded and the measure mentioned in Table 24. The recorded power valu RBWREF by the formula	Hz RBW filter b Hz then the RBV of the analyser ralue correspon 25: Parameter Va 25: Parameter Va 1 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Gau RI 500 Continuo mber of sweep I points is used. all be D-M3 rement sha st five D-M3 rement sha	as the maximum andwidth increr V value corresp settings are list ding to one OCI s for Transien lue 00 0 ms ssian MS hold 01 us sweep booints and the sv 3 test signa II be repeat converted	bandwidth that falls int mental pattern of spectr onding to one OCW off ted in Table 25, and if C W offset frequency is 30 it Measurement At higher RBW value clipped to its maximus weep time shall be the sa ser shall be set to d for each offset I. The peak value ed at each offset	tes the settings frequency is bCW is 250 kHz bCW is 250 kHz tes tes tes tes tes tes to the settings frequency. The shall be the frequency	

Measurement Data

Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result
F _c -0.5*OCW-1200kHz	-71.34	-27	
F _c -0.5*OCW-400kHz	-70.34	-27	
F _c -OCW	-68.62	0	
F _c -0.5*OCW-3kHz	-66.56	0	Dees
F _c +0.5*OCW+3kHz	-66.38	0	Pass
F _c +OCW	-68.57	0	
F _c +0.5*OCW+400kHz	-69.86	-27	
F _c +0.5*OCW+1200kHz	-68.64	-27	

Test Requirement:	ETSI EN 300 220-2 Clause 4.2.2					
Test Method:	ETSI EN 300 220-1 Clause 5.9.1.2					
	Table 20: Parameters for TX Spurious Radiations Measurement					
	Operating Mode	Frequency Range	RBW _{REF} (see note 2)			
	Transmit mode	9 kHz ≤ f < 150 kHz				
		150 kHz ≤ f < 30 MH 30 MHz ≤ f < f _c - m	z 10 kHz 100 kHz			
		$f_c - m \le f < f_c - n$	10 kHz			
		$f_c - n \le f < f_c - p$	1 kHz			
		$f_c + p < f \le f_c + n$	1 kHz			
Receiver setup:		$f_c + n < f \le f_c + m$	10 kHz			
		$f_c + m < f \le 1 \text{ GHz}$	100 kHz			
		1 GHz < f ≤ 6 GHz	1 MHz			
	f _c is the Operating Frequen m is 10 x OCW or 500 kHz, n is 4 x OCW or 100 kHz, w p is 2,5 x OCW. NOTE 2: If the value of RBW used fo clause 4.3.10.1.	, whichever is the greater. whichever is the greater.	$_{REF}$, use bandwidth correction from			
Test Frequency range:	25MHz to 6GHz					
Limit:	Frequency	Limit(operation)	Limit(standby)			
	47 MHz to 74 MHz 87.5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz	4nW(-54dBm)	2nW(-57dBm)			
	Other frequencies below 1000 MHz	250nW(-36dBm)	2nW(-57dBm)			
	Above 1000 MHz	1uW(-30dBm)	20nW(-47dBm)			
Test setup:	Below 1GHz	Antenna Tower and Antenna Tower and Antenna Tower Antenna Tow				
	Above 1GHz					

7.2.7 Transmit spurious emissions

Report No.: GTSL202208000127E02

	Report No.: GTSL202208000127E02
	AE EUT Hom Anteina Tower Hom Anteina Tower UTUrntable Ground Reference Plane Test Receiver
Test procedure:	Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below:
	Below 1GHz:
	1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
	2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna
	by reducing the readings obtained in steps 7 and 8 by the power loss in

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	Report No.: GTSL202208000127E02
	the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half- wave dipole antenna by the following formula:
	ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi)
	where:
	Pg is the generator output power into the substitution antenna.
	Above 1GHz:
	Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

GTS

Report No.: GTSL202208000127E02

5

1000

500

Ôver

đB

Limit Remark

Limit

dBm/m

0.75 -88.08 -54.00 -34.08 Peak

1.12 -88.76 -54.00 -34.76 Peak

1.21 -89.72 -54.00 -35.72 Peak

1.96 -90.12 -54.00 -36.12 Peak

3.93 -81.01 -54.00 -27.01 Peak

4.74 -1.88 -36.00 34.12 Peak

Line

Measurement Data

-60 -70

-80

-90 -100 25

1

2

3

4

5

6 *

Below 1GHz			
Test mode	Transmitting mode	Polarity	Horizontal
Level (dBm/m)			
0			
-10			ERP
-20			
-30			
-40			
-50			

Δ

Level

dBm/m

200

Frequency (MHz)

Cable

Loss

₫₿

2 3

ReadAntenna Preamp

dB/m

25.44

25.13

25.13

24.55

31.82

34.05

Freq Level Factor Factor

dBm

100

₫₿

36.07

36.65

36.74

37.35

37.59

37.61

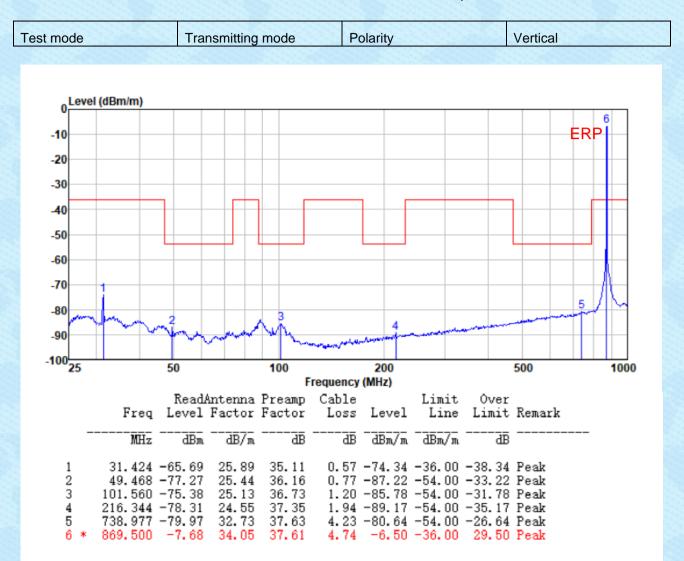
50

MHz

47.676 -78.20

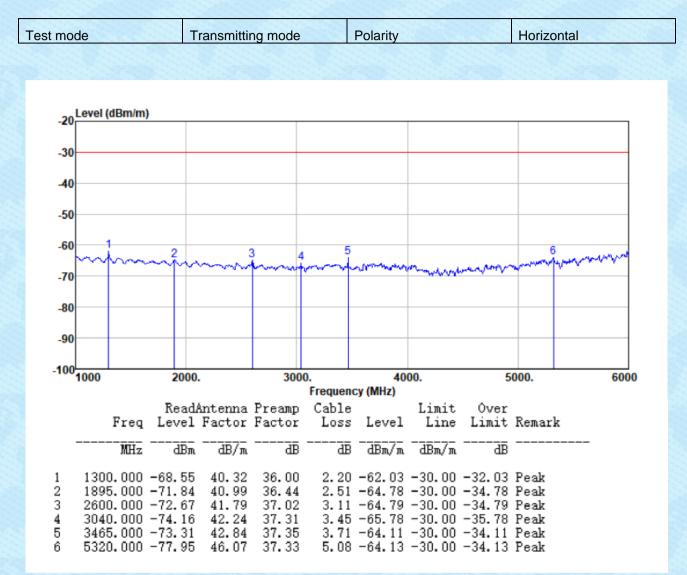
91.594 -78.36

102.312 -79.32

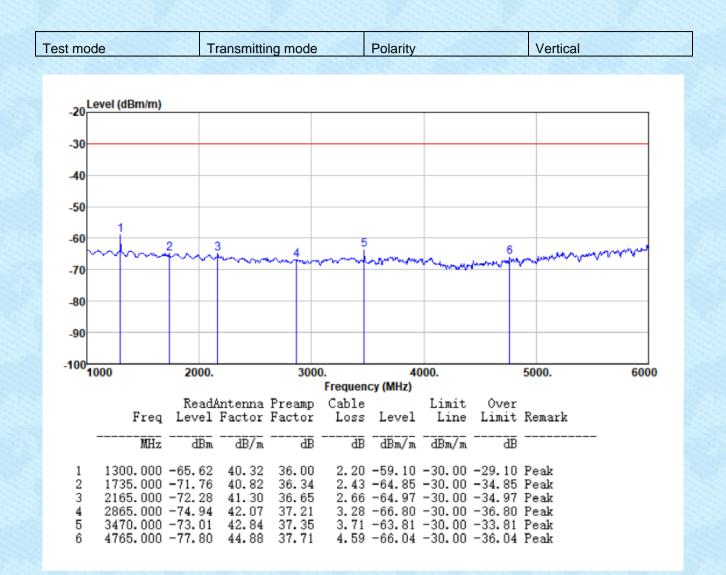

221.186 -79.28

654.279 -79.17

869.500 -3.06


Report No.: GTSL202208000127E02

GTS


Report No.: GTSL202208000127E02

Above 1GHz:

Report No.: GTSL202208000127E02

7.3 Receiver Requirements

Receiver Classification,	Table 1 of ETSI EN 300 220-1.	
Rx Class	Risk assessment of Rx performance	
1	Category 1 is a high performance level of receiver. In particular to be used where the operation of a SRD may have inherent safety of human life implications.	
1.5	Category 1.5 is an improved performance level of receiver category 2.	
2	Category 2 is standard performance level of receiver.	
3	Category 3 is a low performance level of receiver. Manufacturers have to be aware that category 3 receivers are not able to work properly in case of coexistence with some services such as a mobile radio service in adjacent bands. The manufacturer shall provide another mean to overcome the weakness of the radio link or accept the failure.	
NOTE: The receiver category should be stated in both the test report and in the user's manual for the equipment. Receiver category 3 will be withdrawn after December 31 st , 2018.		
The EUT (Receiver part) belong to Category 2 with no Polite spectrum access function.		

7.3.1 Receiver sensitivity

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.2 Clear Channel Assessment threshold

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.3 Polite spectrum access timing parameters

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.4 Adaptive Frequency Agility

Not applicable, since the test applied to AFA quipment.

7.3.5 Adjacent channel selectivity

Not applicable, since the test applied to Category 1 equipment.

7.3.6 Receiver saturation at Adjacent Channel

Not applicable, since the test applied to Category 1 equipment.

7.3.7 Spurious response rejection

Not applicable, since the test applied to Category 1 equipment.

7.3.8 Behaviour at high wanted signal level

Not applicable, since the test applied to Category 1 equipment.

7.3.9 Bi-Directional Operation Verification

Not applicable, since this product is not support Bi-Directional operation function.

7.3.10 Blocking

Test Requirement:	ETSI EN 300 220-2 Clause 4.4.2		
Test Method:	ETSI EN 300 220-1 clause 5.18		
Limit:	Table 43: Blocking level parameters for RX category 1		
	Requirement Blocking at ±2 MHz from Centre Frequency	Limits Receiver category 1 ≥ -20 dBm	
	Blocking at ±10 MHz from Centre Frequency Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -20 dBm ≥ -20 dBm	
	Table 42: Blocking level parameters for RX category 1.5		
	Requirement	Limits Receiver category 1.5	
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -43 dBm	
	Blocking at ±10 MHz from OC edge f _{high} and f _{low} Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -33 dBm ≥ -33 dBm	
	Table 41: Blocking leve	I parameters for RX category 2	
	Requirement	Limits	
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	Receiver category 2 ≥ -69 dBm	
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -44 dBm	
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -44 dBm	
		I parameters for RX category 3	
	Requirement	Limits Receiver category 3	
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -80 dBm	
	Blocking at ±10 MHz from OC edge f _{high} and f _{low} Blocking at ±5 % of Centre Frequency or 15 MHz,	≥ -60 dBm	
	whichever is the greater	≥ -60 dBm	
Test setup:	A = 10 log (BW _{kHz} / 16 kHz) BW is Signal Generator A		
	Signal Generator B		
Test procedure:	 Two signal generators A and B shall be connected to the receiver via a combining network to the receiver antennaconnector. Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal. Signal generator B shall be unmodulated. Measurements shall be carried out at frequencies of the unwanted signal at approximately ±2 MHz and ±10 MHz, avoiding those frequencies at which spurious responses occur. Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established, however, the level at the receiver input shall not be adjusted below the sensitivity limit given in clause 8.1.4. The output level of generator A shall then be increased by 3 dB. Signal generator B is then switched on and adjusted until the wanted criteria (see clause 8.1.1) is just exceeded. With signal generator B settings unchanged the power into the receiver is measured by replacing the receiver with a power meter or spectrum analyzer. This level shall be recorded. Alternatively, equipment having a dedicated or 		

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No .:	GTSL202208	000127E02
--------------	------------	-----------

	integral antenna may use a radiated measurement setup. For this, a test site from clause A.1 shall be selected and the requirements from clauses A.2 and A.3 apply.	
	 6. Signal generators A and B together with a combiner shall be placed outside the anechoic chamber and a TX test antenna shall be placed with the EUT's antenna polarisation. The EUT shall be placed at the location of the turntable at the orientation of the most sensitive position. Generator A shall be set in order to reach the EUT sensitivity limit +3 dB. 7. The procedure shall be the same as for the conducted measurement. 	
	Bloking is the difference between signal generator B and signal generator A levels.	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement data:

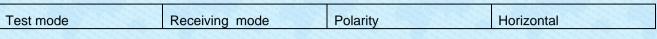
Receiver Category	Frequency Offset	Value(dBm)	Limit(dBm)	Result
2	+2MHz	-58.12	-69	Pass
2	-2MHz	-59.33	-69	Pass
2	+10MHz	-39.62	-44	Pass
2	-10MHz	-38.62	-44	Pass
2	+43.42MHz	-36.31	-44	Pass
2	-43.42MHz	-34.32	-44	Pass

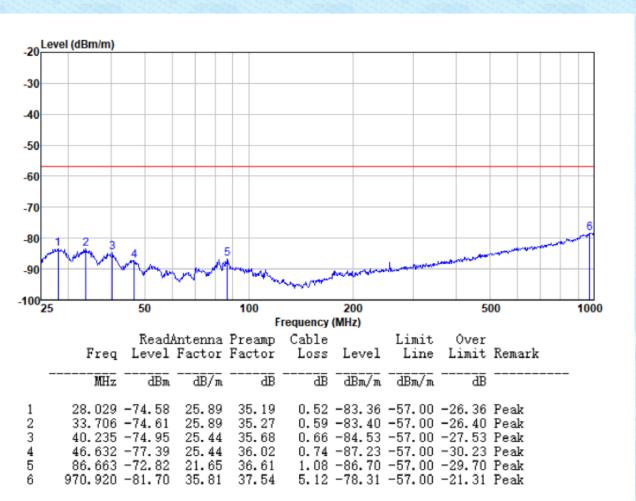
7.3.11 Spurious emissions

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 levels of the EUT. The following test procedure as below:

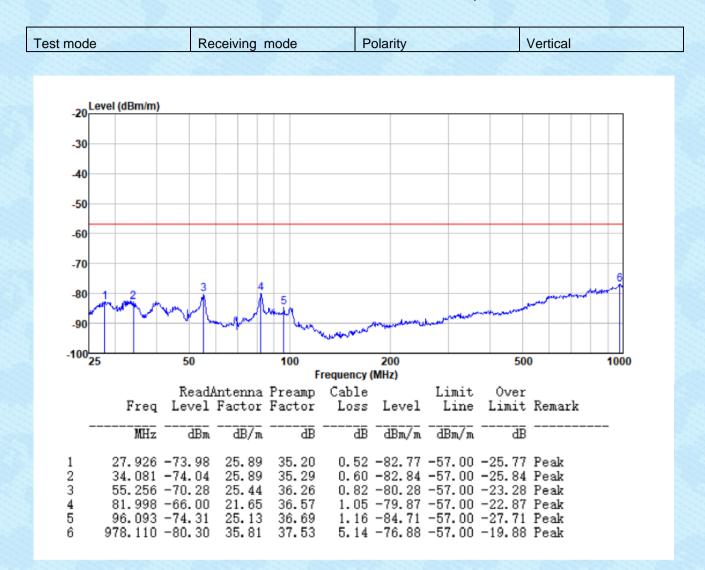
Below 1GHz:

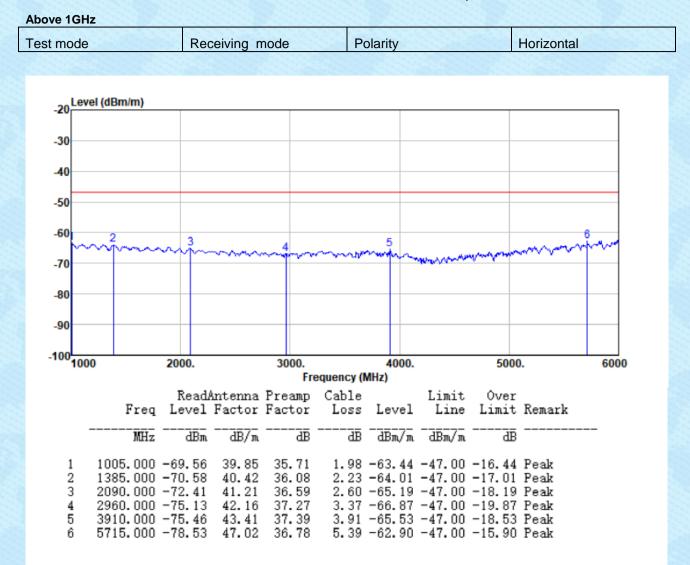
	1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
	use as declared by the provider.2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter
	 under test. 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized
	horizontally.
	6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	 Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half- wave dipole antenna by the following formula:
	ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd) where:
	Pg is the generator output power into the substitution antenna.
	Above 1GHz:
	Different between above is the test site, change from Semi- Anechoic
	Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass


Global United Technology Services Co., Ltd.

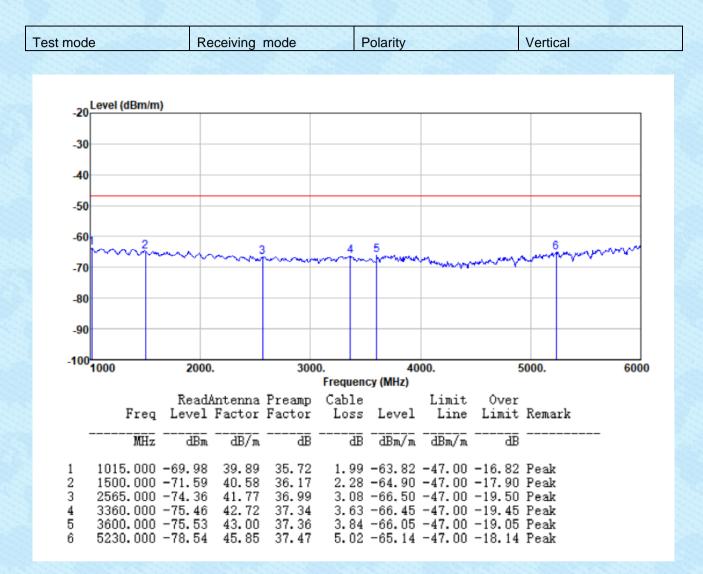

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data


Below 1GHz



Report No.: GTSL202208000127E02


GTS

Report No.: GTSL202208000127E02

GTS

Report No.: GTSL202208000127E02

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----